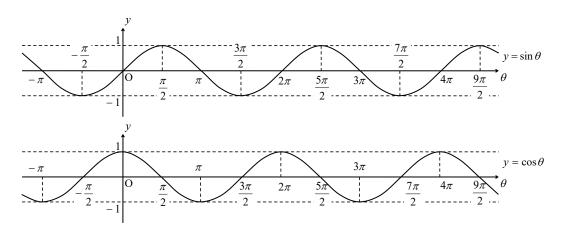
10. 三角関数 | 1. 定義と基本性質 | 2. 三角関数とグラフ | 2. 三角関数のグラフ

<u>インデックスに戻る</u>

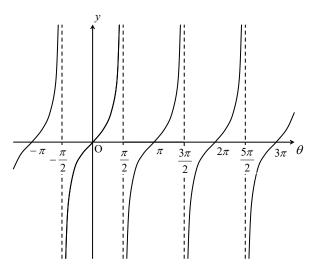

10. 三角関数

10-1. 定義と基本性質

10-1-2. 三角関数とグラフ

10-1-2-2. 三角関数のグラフ

 $y = \sin \theta$ 、 $y = \cos \theta$ のグラフは、正弦曲線(サインカーブ)とよばれる曲線である。


三角関数の定義から、次の等式が成り立つ。

$$\sin(\theta + 2\pi) = \sin\theta$$
, $\cos(\theta + 2\pi) = \cos\theta$

これは、 $y = \sin \theta$ 、 $y = \cos \theta$ のグラフが、 2π ごとに同じ形を繰り返すことを意味する。このことを、関数 $\sin \theta$ 、 $\cos \theta$ は 2π の周期をもつという。

また、 $y = \sin \theta$ のグラフは原点について対称であり、 $y = \cos \theta$ のグラフは y 軸について対称である。

 $y = \tan \theta$ のグラフは次のようになる。

定義より

$$\tan(\theta + \pi) = \tan\theta$$

が成り立つから、 $y = \tan \theta$ は π の周期をもつ。すなわち、 $y = \tan \theta$ のグラフは π ごとに同じ形を繰り返す。また、 $y = \tan \theta$ のグラフは原点について対称である。

an heta は $heta = \frac{\pi}{2} + n\pi$ (n は整数) では定義されないが、 y = an heta のグラフは heta の値が限りなく $heta = \frac{\pi}{2} + n\pi$ に近づくとき、直線 $heta = \frac{\pi}{2} + n\pi$ に限りなく近づく。グラフが(無限遠に遠ざかりながら) ある直線に近づくとき、その直線をグラフの漸近線という。 直線 $heta = \frac{\pi}{2} + n\pi$ は y = an heta のグラフの漸近線である。

インデックスに戻る