<u>インデックスに戻る</u>

6. 平面図形

6-2. 円の性質

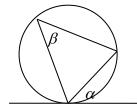
6-2-2. 円と直線

6-2-2-2. 接弦定理

接線と弦の作る角について、次のことが成り立つ。

接弦定理

円の弦と、その端点における接線とのつくる角は、その角の内部にある 弧に対する円周角に等しい。



$$\alpha = \beta$$

[証明]

 \mathbf{POLO} 点 \mathbf{A} における接線を \mathbf{I} とし、 \mathbf{IL} に点 \mathbf{A} と異なる点 \mathbf{X} をとる。 $\mathbf{ZXAB} = \alpha$ とする。 \mathbf{A} を一方の端点とする \mathbf{PO} の直径のもう一方の端点を \mathbf{C} とする。直線 \mathbf{AB} に関して \mathbf{X} と反対側にあり、 \mathbf{PO} の周上にある点を \mathbf{PO} とする。

(i) $\alpha < 90^{\circ}$ の場合

接線の性質より CALAX であるから

$$\angle CAB = 90^{\circ} - \alpha \quad \cdots \textcircled{1}$$

ACが円Oの直径であるから

$$\angle ABC = 90^{\circ} \cdots 2$$

三角形 ABCの内角の和を考えて、②より

$$\angle ACB = 90^{\circ} - \angle CAB \quad \cdots (3)$$

①3より

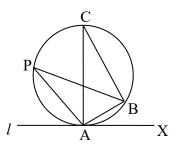
$$\angle ACB = 90^{\circ} - (90^{\circ} - \alpha) = \alpha \quad \cdots \textcircled{4}$$

円周角の定理より

$$\angle APB = \angle ACB \quad \cdots \bigcirc 5$$

④⑤より

$$\angle APB = \alpha$$



6. 平面図形 | 2. 円の性質 | 2. 円と直線 | 2. 接弦定理

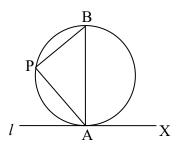
(ii) $\alpha = 90^{\circ}$ の場合

∠CAB=90°であるから、ABは直径である。円周角の定理より

$$\angle APB = 90^{\circ}$$

よって、

$$\angle APB = \alpha$$



(iii) $\alpha > 90^{\circ}$ の場合

接線の性質より CALAX であるから

$$\angle CAB = \alpha - 90^{\circ}$$
 ···· ⑥

ACが円Oの直径であるから

$$\angle ABC = 90^{\circ} \quad \cdots \bigcirc \bigcirc$$

三角形 ABCの内角の和を考えて、⑦より

$$\angle ACB = 90^{\circ} - \angle CAB \quad \cdots (8)$$

⑥⑧より

$$\angle ACB = 90^{\circ} - (\alpha - 90^{\circ}) = 180^{\circ} - \alpha \quad \cdots \oplus$$

円に内接する四角形の性質より、

$$\angle APB = 180^{\circ} - \angle ACB \cdots \bigcirc \bigcirc$$

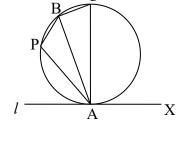
910より

$$\angle APB = 180^{\circ} - (180^{\circ} - \alpha) = \alpha$$

(i)(ii)(iii)いずれの場合も

$$\angle APB = \angle XAB$$

が成り立つことが示された。



インデックスに戻る