13. 平面ベクトル | 1. ベクトルの定義と演算 | 4. ベクトルの内積 | 1. 内積の定義

<u>インデックスに戻る</u>

13. 平面ベクトル

13-1. ベクトルの定義と演算

13-1-4. ベクトルの内積

13-1-4-1. 内積の定義

 $\vec{0}$ でない2つのベクトル \vec{a} 、 \vec{b} に対して、3点 \mathbf{O} 、 \mathbf{A} 、 \mathbf{B} を

$$\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}$$

を満たすようにとるとき、 $\angle AOB$ の大きさ θ を \vec{a} と \vec{b} のなす角という。さらに、 $\left| \vec{a} \right| \left| \vec{b} \right| \cos \theta$ を \vec{a} と \vec{b} の内積といい、記号で $\vec{a} \cdot \vec{b}$ と表す。

内積の定義

 \vec{a} \vec{b} のなす角を θ とするとき、

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

(注)

 \vec{a} 、 \vec{b} の少なくとも一方が $\vec{0}$ のとき、 \vec{a} と \vec{b} のなす角は考えない。また、そのときの内積は

$$\vec{a} \cdot \vec{b} = 0$$

とする。

13. 平面ベクトル | 1. ベクトルの定義と演算 | 4. ベクトルの内積 | 1. 内積の定義

(注)

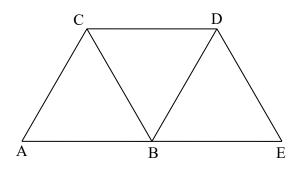
 \vec{a} と \vec{b} が平行で同じ向きのときのなす角 θ は θ = 0° であり

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$$

 \vec{a} と \vec{b} が平行で逆向きのときのなす角 θ は θ = 180° であり

$$\vec{a} \cdot \vec{b} = - |\vec{a}| |\vec{b}|$$

(例)



上の図で、三角形 ABC、三角形 BCD、三角形 BDE はすべて、一辺の長さが 2 の正三角形であるとする。このとき、

$$\overrightarrow{AE} \cdot \overrightarrow{AC} = 4 \times 2 \times \cos 60^{\circ} = 4 \times 2 \times \frac{1}{2} = 4$$

$$\overrightarrow{BC} \cdot \overrightarrow{BE} = 2 \times 2 \times \cos 120^{\circ} = 2 \times 2 \times \left(-\frac{1}{2}\right) = -2$$

$$\overrightarrow{DC} \cdot \overrightarrow{CA} = \overrightarrow{DC} \cdot \overrightarrow{DB} = 2 \times 2 \times \cos 60^{\circ} = 2 \times 2 \times \frac{1}{2} = 2$$

<u>インデックスに戻る</u>