13. 平面ベクトル | 1. ベクトルの定義と演算 | 2. ベクトルの定義と相等 | 1. ベクトルの加法

<u>インデックスに戻る</u>

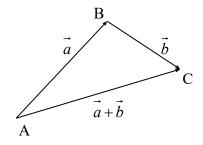
13. 平面ベクトル

13-1. ベクトルの定義と演算

13-1-2. ベクトルの演算

13-1-2-1. ベクトルの加法

2 つのベクトル \vec{a} 、 \vec{b} について、 \vec{a} の始点を \vec{A} 、終点を \vec{B} とし、 \vec{b} = \vec{BC} を満たすように点 \vec{C} を とるものとする。このときの \vec{AC} を \vec{a} と \vec{b} の和といって記号で \vec{a} + \vec{b} と表す。すなわち、ベクトル \vec{a} + \vec{b} は、 \vec{a} の終点と \vec{b} の始点が一致するように平行移動したときの、 \vec{a} の始点から \vec{b} の終点 へ向かうベクトルである。定義より、 \vec{AB} + \vec{BC} = \vec{AC} が成り立つ。

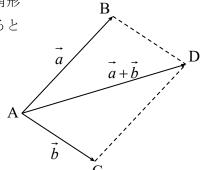


ベクトルの和と平行四辺形について、次のことがいえる。

同一直線上にない 3 点 A 、 B 、 C について、四角形 ABDC が平行四辺形になるように点 D を定めると

き、

$$\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$$

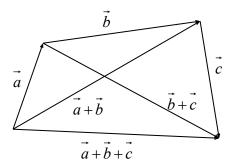


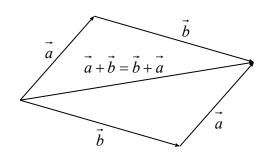
ベクトルの和について、次のことが成り立つ。

$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$
 (結合法則)

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 (交換法則)

結合法則が成り立つので、3つのベクトル \vec{a} 、 \vec{b} 、 \vec{c} の和は括弧のつけ方によらない。これを普通 $\vec{a}+\vec{b}+\vec{c}$ で表す。4つ以上のベクトルの和についても同様である。





(例)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE}$$

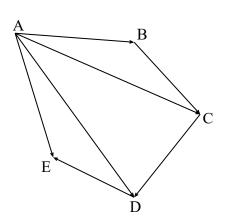
$$= (\overrightarrow{AB} + \overrightarrow{BC}) + \overrightarrow{CD} + \overrightarrow{DE}$$

$$= \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DE}$$

$$= (\overrightarrow{AC} + \overrightarrow{CD}) + \overrightarrow{DE}$$

$$= \overrightarrow{AD} + \overrightarrow{DE}$$

$$= \overrightarrow{AE}$$



<u>インデックスに戻る</u>